cvEigenanatomy¶
purpose:
Cross-validation method for eigenanatomy decompositions.
description:
Perform cross-validation on an image set using eigencomponents to predict an outcome variable.
usage:
cvEigenanatomy(demog, images, outcome, ratio=10, mask=NA,
sparseness=0.01, nvecs=50, its=5, cthresh=250, ...)
examples:
# generate simulated outcome
nsubjects <- 100
x1 <- seq(1, 10, length.out=nsubjects) + rnorm(nsubjects, sd=2)
x2 <- seq(25, 15, length.out=nsubjects) + rnorm(nsubjects, sd=2)
outcome <- 3 * x1 + 4 * x2 + rnorm(nsubjects, sd=1)
# generate simulated images with outcome predicted
# by sparse subset of voxels
voxel.1 <- 3 * x1 + rnorm(nsubjects, sd=2)
voxel.2 <- rnorm(nsubjects, sd=2)
voxel.3 <- 2 * x2 + rnorm(nsubjects, sd=2)
voxel.4 <- rnorm(nsubjects, sd=3)
input <- cbind(voxel.1, voxel.2, voxel.3, voxel.4)
mask <- as.antsImage(matrix(c(1,1,1,1), nrow=2))
# generate sample demographics that do not explain outcome
age <- runif(nsubjects, 50, 75)
demog <- data.frame(outcome=outcome, age=age)
result <- cvEigenanatomy(demog, input, "outcome", ratio=5, mask,
sparseness=0.25, nvecs=4)