sampledoc

ANTsR 0.0.0 documentation

Population study using simple_voxel_based_analysis.R

«  Time series registration and transformation.   ::   Contents   ::   Population ROI study using simple_roi_analysis.R  »

Population study using simple_voxel_based_analysis.R

This example shows how to run a basic linear regression study across a population of image measurements.

Load libraries.

library(knitr)
library(ANTsR)

Define the normalized image cohort and image mask.

controlFileNames <- list.files(path = "../../", pattern = glob2rx("phantomtemplate_CONTROL*"),
    full.names = TRUE, recursive = TRUE)
experimentalFileNames <- list.files(path = "../../", pattern = glob2rx("phantomtemplate_EXP*"),
    full.names = TRUE, recursive = TRUE)
images <- c(controlFileNames, experimentalFileNames)
mask <- "../../demo/example_images/phantomtemplate_mask.nii.gz"

Assign cohort (diagnosis) predictor and assign a random age to simulated images.

diagnosis <- c(rep(1, length(controlFileNames)), rep(0, length(experimentalFileNames)))
age <- runif(length(diagnosis), 25, 30)

Specify output path for statistical maps.

outputPath <- "../../test_output/"

Perform a simple voxelwise t-test.

prefix <- "ANTsR_t.test_"
simple_voxel_based_analysis(dimensionality = 2, imageFileNames = images, predictors = data.frame(diagnosis),
    maskFileName = mask, outputPrefix = paste0(outputPath, prefix), testType = "student.t")

Plot the results.

timg <- antsImageRead(paste0(outputPath, prefix, "tValues.nii.gz"), 2)
plotANTsImage(myantsimage = antsImageRead(mask, 2), functional = list(timg),
    threshold = "0x1", color = "red", axis = 1)

«  Time series registration and transformation.   ::   Contents   ::   Population ROI study using simple_roi_analysis.R  »