R/subtyper.R
analyze_longitudinal_change.Rd
This function fits a linear mixed-effects model to assess how an outcome variable changes over time (or another continuous predictor). It returns a list containing the model, key statistics, and two plots: a spaghetti plot showing individual trajectories and a population-level plot showing the overall model fit.
analyze_longitudinal_change(
data,
outcome_var,
predictor,
covariates = NULL,
random_effect = "eid",
verbose = FALSE
)
A data frame containing all necessary variables.
The name of the dependent variable (character string).
The name of the main continuous predictor, typically a time variable like "yearsbl" (character string).
A character vector of other fixed-effect covariates to include in the model.
The name of the random intercept grouping variable, typically a subject ID like "eid" (character string).
A logical. If TRUE
, the function will print the exact
model formula being used. Defaults to FALSE
.
A list containing the lmer
model object, Cohen's d for the main
predictor, t-value, p-value, and two ggplot
objects (spaghetti_plot
and population_plot
). Returns NULL
if the model fails.
if (FALSE) { # \dontrun{
# Assuming `my_long_data` exists and has the necessary columns
result <- analyze_longitudinal_change(
data = my_long_data,
outcome_var = "CognitiveScore",
predictor = "YearsFromBaseline",
covariates = c("AgeAtBaseline", "Sex", "Education"),
random_effect = "SubjectID",
verbose = TRUE
)
# Display the generated plots side-by-side
if (!is.null(result)) {
library(gridExtra)
grid.arrange(result$spaghetti_plot, result$population_plot, ncol = 2)
}
} # }