apply consensus clustering give several clustering solutions
consensusSubtypingCOCA(
dataToClust,
targetk,
cocanames,
newclustername,
reorderingVariable,
idvar,
visitName,
baselineVisit,
maxK,
consensusmethod = "kmeans",
returnonehot = FALSE,
binnmf = 0,
verbose = TRUE
)
dataframe input that contains the relevant variables (may have others as well)
the desired number of classes
names of columns to use for the consensus
the column name for the consensus clustering
the name of the column to use to reorder the cluster names
variable name for unique subject identifier column
the column name defining the visit variables
the string naming the baseline visit
maximum number of clusters
either kmeans or hclust
boolean
integer (0 is default - no nmf)
boolean
new dataframe with new variables attached
mydf = generateSubtyperData( 100 )