Produce several complementary measurements of outlierness

outlierness(
  mxdfin,
  measureColumns,
  calck,
  outlierfunctions = c("LOOP", "LOF", "INFLO", "RDOS", "KDEOS", "LDF", "KNN_AGG",
    "KNN_IN", "KNN_SUM", "RKOF"),
  verbose = FALSE
)

Arguments

mxdfin

Input data frame with repeated measurements and a grouped time variable

measureColumns

vector string of column names to use in outlier detection

calck

optional integer for knn

outlierfunctions

vector of strings naming outlier functions to report

verbose

boolean

Value

data frame

Author

Avants BB

Examples

mydf = generateSubtyperData( 100 )
rbfnames = names(mydf)[grep("Random",names(mydf))]
mydf[8,rbfnames] = mydf[8,rbfnames] * 4.0
mydfol = outlierness( mydf, rbfnames )
#> [1] "r update: 2"
#> [1] "r update: 3"
#> [1] "r update: 4"
#> [1] "r update: 5"
#> [1] "r update: 6"
#> [1] "r update: 7"
olnames = names(mydf)[grep("OL_",names(mydf))]
mydf[6,olnames]
#> data frame with 0 columns and 1 row
mydf[8,olnames]
#> data frame with 0 columns and 1 row