Produce several complementary measurements of outlierness
outlierness(
mxdfin,
measureColumns,
calck,
outlierfunctions = c("LOOP", "LOF", "INFLO", "RDOS", "KDEOS", "LDF", "KNN_AGG",
"KNN_IN", "KNN_SUM", "RKOF"),
verbose = FALSE
)
data frame
mydf = generateSubtyperData( 100 )
rbfnames = names(mydf)[grep("Random",names(mydf))]
mydf[8,rbfnames] = mydf[8,rbfnames] * 4.0
mydfol = outlierness( mydf, rbfnames )
#> [1] "r update: 2"
#> [1] "r update: 3"
#> [1] "r update: 4"
#> [1] "r update: 5"
#> [1] "r update: 6"
#> [1] "r update: 7"
olnames = names(mydf)[grep("OL_",names(mydf))]
mydf[6,olnames]
#> data frame with 0 columns and 1 row
mydf[8,olnames]
#> data frame with 0 columns and 1 row