An R package providing ANTs features in R.
Version: 0.3.1
License: GPL (>=2)
Depends: R (≥ 3.0), methods
Imports: Rcpp, tools, magrittr
LinkingTo: Rcpp, ITKR
Author: Brian B. Avants, Benjamin M. Kandel, Jeff T. Duda, Philip A. Cook, Nicholas J. Tustison
Maintainer: Brian B. Avants
URL: homepage
BugReports: github issues
NeedsCompilation: yes
Travis checks: ANTsR results
Reference manual: ANTsR.pdf
Vignettes:
Wiki: Notes and work in progress examples
Package source: from github
OS X Mavericks, Yosemite binaries: OSX
Linux binaries: Ubuntu
We are working toward Windows binaries.
Install the binary, after downloading, via command line:
R CMD INSTALL ANTsR_*.tgz
Inter-modality inference yet to be added RIPMMARC
Eigenanatomy for multiple modality population studies function sparseDecom
Tumor segmentation function mrvnrfs
(not exactly the same but close)
Multiple modality pediatric template and population study employs several aspects of ANTsR
Structural networks from subject-level data function makeGraph
plus yet to be added RIPMMARC
SCCAN relating neuroimaging and cognitive batteries function sparseDecom2
Sparse regression with manifold smoothness constraints function sparseRegression
Prior-based eigenanatomy function sparseDecom
drat::addRepo("ANTs-R")
install.packages("ANTsR")
Thanks to zarquon42b.
with devtools in R
library( devtools )
install_github("stnava/cmaker")
install_github("stnava/ITKR")
install_github("stnava/ANTsR")
this assumes you have git installed / accessible in your environment, as well as a compiler, preferably clang
.
windows users should see Rtools and maybe, also, installr for assistance in setting up their environment for building (must have a compiler too)
from command line
First, clone the repository:
$ git clone https://github.com/stnava/ITKR.git
$ git clone https://github.com/stnava/ANTsR.git
Install the package as follows:
$ R CMD INSTALL ITKR
$ R CMD INSTALL ANTsR
You may need to install R packages that ANTsR requires. For example:
mydeps <- c( "Rcpp", "tools", "methods", "magrittr" )
install.packages( pkgs = mydeps, dependencies = TRUE )
These dependencies are subject to change until development is stable.
You can gain additional functionality by installing packages that
are listed in the DESCRIPTION
file under Suggests
.
The travis.yml
file also shows a way to install from Linux command line.
Load the package:
library(ANTsR)
List the available functions in the namespace ANTsR:
ANTsR::<double-tab>
Call help on a function via ?functionName or see function arguments
via args(functionName)
If nothing else, ANTsR makes it easy to read and write medical images and to map them into a format compatible with R.
Read, write, access an image
mnifilename<-getANTsRData("mni")
img<-antsImageRead(mnifilename)
antsImageWrite(img,mnifilename)
antsGetSpacing(img)
antsGetDirection(img)
antsGetOrigin(img)
print(antsGetPixels(img,50,60,44))
print(max(img))
Index an image with a label
gaussimg<-array( data=rnorm(125), dim=c(5,5,5))
arrayimg<-array( data=(1:125), dim=c(5,5,5))
img<-as.antsImage( arrayimg )
print( max(img) )
print( mean(img[ img > 50 ]))
print( max(img[ img >= 50 & img <= 99 ]))
print( mean( gaussimg[ img >= 50 & img <= 99 ]) )
Convert a 4D image to a matrix
gaussimg<-array( data=rnorm(125*10), dim=c(5,5,5,10))
gaussimg<-as.antsImage(gaussimg)
print(dim(gaussimg))
mask<-getAverageOfTimeSeries( gaussimg )
voxelselect <- mask < 0
mask[ voxelselect ]<-0
mask[ !voxelselect ]<-1
gmat<-timeseries2matrix( gaussimg, mask )
print(dim(gmat))
Convert a list of images to a matrix
nimages<-100
ilist<-list()
for ( i in 1:nimages )
{
simimg<-makeImage( c(50,50) , rnorm(2500) )
simimg<-smoothImage(simimg,1.5)
ilist[i]<-simimg
}
# get a mask from the first image
mask<-getMask( ilist[[1]],
lowThresh=mean(ilist[[1]]), cleanup=TRUE )
mat<-imageListToMatrix( ilist, mask )
print(dim(mat))
Do fast statistics on a big matrix
Once we have a matrix representation of our population, we
might run a quick voxel-wise regression within the mask.
Then we look at some summary statistics.
mat<-imageListToMatrix( ilist, mask )
age<-rnorm( nrow(mat) ) # simulated age
gender<-rep( c("F","M"), nrow(mat)/2 ) # simulated gender
# this creates "real" but noisy effects to detect
mat<-mat*(age^2+rnorm(nrow(mat)))
mdl<-lm( mat ~ age + gender )
mdli<-bigLMStats( mdl, 1.e-4 )
print(names(mdli))
print(rownames(mdli$beta.t))
print(paste("age",min(p.adjust(mdli$beta.pval[1,]))))
print(paste("gen",min(p.adjust(mdli$beta.pval[2,]))))
Write out a statistical map
We might also write out the images so that we can save them for later or look at them with other software.
agebetas<-makeImage( mask , mdli$beta.t[1,] )
antsImageWrite( agebetas, tempfile(fileext ='.nii.gz') )
Neighborhood operations
Images neighborhoods contain rich shape and texture information.
We can extract neighborhoods for further analysis at a given scale.
mnit<-getANTsRData("mni")
mnit<-antsImageRead(mnit)
mnit <- resampleImage( mnit , rep(4, mnit@dimension) )
mask2<-getMask(mnit,lowThresh=mean(mnit),cleanup=TRUE)
radius <- rep(2,mnit@dimension)
mat2<-getNeighborhoodMatrix(mnit, mask2, radius,
physical.coordinates = FALSE,
boundary.condition = "mean" )
The boundary.condition
says how to treat data that is outside of the mask
or the image boundaries. Here, we replace this data with the mean
in-mask value of the local neighborhood.
Eigenanatomy & SCCAN
Images often have many voxels ($p$-voxels) and, in medical applications, this means that $p>n$ or even $p>>n$, where $n$ is the number of subjects. Therefore, we often want to "intelligently" reduce the dimensionality of the data. However, we want to retain spatial locality. This is the point of "eigenanatomy" which is a variation of sparse PCA that uses (optionally) biologically-motivated smoothness, locality or sparsity constraints.
# assume you ran the population example above
eanat<-sparseDecom( mat, mask, 0.2, 5, cthresh=2, its=2 )
eseg<-eigSeg(mask,eanat$eig,F)
jeanat<-joinEigenanatomy(mat,mask,eanat$eig, c(0.1))
eseg2<-eigSeg(mask,jeanat$fusedlist,F)
The parameters for the example above are set for fast processing. You can see our paper for some theory on these methods[@Kandel2014a].
More information is available within the examples that can be seen within
the help for sparseDecom
, sparseDecom2
and the helper function
initializeEigenanatomy
. You might also
see the sccan tutorial.
Other useful tools
?iMath
?ThresholdImage
?quantifyCBF
?antsPreprocessfMRI
?aslPerfusion
?computeDVARS
?getROIValues
?hemodynamicRF
?inspectImageData3D
?makeGraph
?matrixToImages
?antsRegistration
?plotPrettyGraph
?plotBasicNetwork
?getTemplateCoordinates
?antsSet*
Parts of ImageMath
from ANTs are accessible via
?iMath
for more fMRI focused tools, see RKRNS and its github site github RKRNS.
A good visualization alternative is antsSurf.
Alternatively, one can use any function in the namespace by providing arguments exactly same as one provides to the corresponding command-line version.
For example, to call the antsRegistration routine:
ANTsR::antsRegistration( "-d", "2", "-m", "mi[r16slice.nii.gz,r64slice.nii.gz,1,20,Regular,0.05]", "-t", "affine[1.0]", "-c", "2100x1200x1200x0", "-s", "3x2x1x0", "-f", "4x3x2x1","-u", "1", "-o", "[xtest,xtest.nii.gz,xtest_inv.nii.gz]" )
ANTsR::antsRegistration( "-d", "2", "-m", "mi[r16slice.nii.gz,r64slice.nii.gz,1,20,Regular,0.05]", "-t", "affine[1.0]", "-c", "2100x1200x1200x0", "-s", "3x2x1x0", "-f", "4x3x2x1", "-m", "cc[r16slice.nii.gz,r64slice.nii.gz,1,4]", "-t", "syn[5.0,3,0.0]", "-i", "100x100x0", "-s", "2x1x0", "-f", "3x2x1", "-u", "1", "-o", "[xtest,xtest.nii.gz,xtest_inv.nii.gz]" )
WIP: iMath improvements
WIP: ASL pipeline fuctionality
BUG: Fixed image indexing bug
BUG: plot.antsImage improvements
ENH: more antsRegistration options
ENH: geoSeg
ENH: JointLabelFusion and JointIntensityFusion
ENH: Enable negating images
ENH: weingarten curvature
ENH: antsApplyTransformsToPoints with example
ENH: renormalizeProbabilityImages
ENH: Suppress output from imageWrite.
First official release.