Antsr

...


Project maintained by stnava Hosted on GitHub Pages — Theme by mattgraham

ANTsR

Build Status Coverage Status

An R package providing ANTs features in R.

Description

Version: 0.3

License: GPL (>=2)

Depends: R (≥ 3.0), methods

Imports: Rcpp, tools, magrittr

LinkingTo: Rcpp, ITKR

Author: Brian B. Avants, Benjamin M. Kandel, Jeff T. Duda, Philip A. Cook, Nicholas J. Tustison

Maintainer: Brian B. Avants

URL: homepage

BugReports: github issues

NeedsCompilation: yes

Travis checks: ANTsR results

Downloads

Reference manual: ANTsR.pdf

Vignettes:

Wiki: Notes and work in progress examples

Package source: from github

OS X Mavericks, Yosemite binaries: OSX

Linux binaries: Ubuntu

We are working toward Windows binaries.

Install the binary, after downloading, via command line:

R CMD INSTALL ANTsR_*.tgz

Research using ANTsR

Installation from source

drat

drat::addRepo("ANTs-R")
install.packages("ANTsR")

Thanks to zarquon42b.

with devtools in R

library( devtools )
install_github("stnava/cmaker")
install_github("stnava/ITKR")
install_github("stnava/ANTsR")

this assumes you have git installed / accessible in your environment, as well as a compiler, preferably clang.

windows users should see Rtools and maybe, also, installr for assistance in setting up their environment for building (must have a compiler too)

from command line

First, clone the repository:

$ git clone https://github.com/stnava/ITKR.git
$ git clone https://github.com/stnava/ANTsR.git

Install the package as follows:

$ R CMD INSTALL ITKR
$ R CMD INSTALL ANTsR

R dependencies

You may need to install R packages that ANTsR requires. For example:

mydeps <- c( "Rcpp", "tools", "methods", "magrittr" )
install.packages( pkgs = mydeps, dependencies = TRUE )

These dependencies are subject to change until development is stable. You can gain additional functionality by installing packages that are listed in the DESCRIPTION file under Suggests.

The travis.yml file also shows a way to install from Linux command line.

Usage

Load the package:

library(ANTsR)

List the available functions in the namespace ANTsR:

ANTsR::<double-tab>

Call help on a function via ?functionName or see function arguments via args(functionName)

Overview of ANTsR functionality and useful tools

If nothing else, ANTsR makes it easy to read and write medical images and to map them into a format compatible with R.

Read, write, access an image

mnifilename<-getANTsRData("mni")
img<-antsImageRead(mnifilename)
antsImageWrite(img,mnifilename)
antsGetSpacing(img)
antsGetDirection(img)
antsGetOrigin(img)
print(antsGetPixels(img,50,60,44))
print(max(img))

Index an image with a label

gaussimg<-array( data=rnorm(125), dim=c(5,5,5))
arrayimg<-array( data=(1:125), dim=c(5,5,5))
img<-as.antsImage( arrayimg )
print( max(img) )
print( mean(img[ img > 50  ]))
print( max(img[ img >= 50 & img <= 99  ]))
print( mean( gaussimg[ img >= 50 & img <= 99  ]) )

Convert a 4D image to a matrix

gaussimg<-array( data=rnorm(125*10), dim=c(5,5,5,10))
gaussimg<-as.antsImage(gaussimg)
print(dim(gaussimg))
mask<-getAverageOfTimeSeries( gaussimg )
voxelselect <- mask < 0
mask[ voxelselect  ]<-0
mask[ !voxelselect  ]<-1
gmat<-timeseries2matrix( gaussimg, mask )
print(dim(gmat))

Convert a list of images to a matrix

nimages<-100
ilist<-list()
for ( i in 1:nimages )
{
  simimg<-makeImage( c(50,50) , rnorm(2500) )
  simimg<-smoothImage(simimg,1.5)
  ilist[i]<-simimg
}
# get a mask from the first image
mask<-getMask( ilist[[1]],
  lowThresh=mean(ilist[[1]]), cleanup=TRUE )
mat<-imageListToMatrix( ilist, mask )
print(dim(mat))

Do fast statistics on a big matrix

Once we have a matrix representation of our population, we might run a quick voxel-wise regression within the mask.
Then we look at some summary statistics.

mat<-imageListToMatrix( ilist, mask )
age<-rnorm( nrow(mat) ) # simulated age
gender<-rep( c("F","M"), nrow(mat)/2 ) # simulated gender
# this creates "real" but noisy effects to detect
mat<-mat*(age^2+rnorm(nrow(mat)))
mdl<-lm( mat ~ age + gender )
mdli<-bigLMStats( mdl, 1.e-4 )
print(names(mdli))
print(rownames(mdli$beta.t))
print(paste("age",min(p.adjust(mdli$beta.pval[1,]))))
print(paste("gen",min(p.adjust(mdli$beta.pval[2,]))))

Write out a statistical map

We might also write out the images so that we can save them for later or look at them with other software.

agebetas<-makeImage( mask , mdli$beta.t[1,] )
antsImageWrite( agebetas, tempfile(fileext ='.nii.gz') )

Neighborhood operations

Images neighborhoods contain rich shape and texture information.
We can extract neighborhoods for further analysis at a given scale.

mnit<-getANTsRData("mni")
mnit<-antsImageRead(mnit)
mnit <- resampleImage( mnit , rep(4, mnit@dimension) )
mask2<-getMask(mnit,lowThresh=mean(mnit),cleanup=TRUE)
radius <- rep(2,mnit@dimension)
mat2<-getNeighborhoodMatrix(mnit, mask2, radius,
  physical.coordinates = FALSE,
  boundary.condition = "mean" )

The boundary.condition says how to treat data that is outside of the mask or the image boundaries. Here, we replace this data with the mean in-mask value of the local neighborhood.

Eigenanatomy & SCCAN

Images often have many voxels ($p$-voxels) and, in medical applications, this means that $p>n$ or even $p>>n$, where $n$ is the number of subjects. Therefore, we often want to "intelligently" reduce the dimensionality of the data. However, we want to retain spatial locality. This is the point of "eigenanatomy" which is a variation of sparse PCA that uses (optionally) biologically-motivated smoothness, locality or sparsity constraints.

# assume you ran the population example above
eanat<-sparseDecom( mat, mask, 0.2, 5, cthresh=2, its=2 )
eseg<-eigSeg(mask,eanat$eig,F)
jeanat<-joinEigenanatomy(mat,mask,eanat$eig, c(0.1))
eseg2<-eigSeg(mask,jeanat$fusedlist,F)

The parameters for the example above are set for fast processing. You can see our paper for some theory on these methods[@Kandel2014a].

More information is available within the examples that can be seen within the help for sparseDecom, sparseDecom2 and the helper function initializeEigenanatomy. You might also see the sccan tutorial.

Other useful tools

?iMath
?ThresholdImage
?quantifyCBF
?antsPreprocessfMRI
?aslPerfusion
?computeDVARS
?getROIValues
?hemodynamicRF
?inspectImageData3D
?makeGraph
?matrixToImages
?antsRegistration
?plotPrettyGraph
?plotBasicNetwork
?getTemplateCoordinates
?antsSet*

Parts of ImageMath from ANTs are accessible via

?iMath

for more fMRI focused tools, see RKRNS and its github site github RKRNS.

A good visualization alternative is antsSurf.

Direct access to ANTs tools

Alternatively, one can use any function in the namespace by providing arguments exactly same as one provides to the corresponding command-line version.

For example, to call the antsRegistration routine:

ANTsR::antsRegistration( "-d", "2", "-m", "mi[r16slice.nii.gz,r64slice.nii.gz,1,20,Regular,0.05]", "-t", "affine[1.0]", "-c", "2100x1200x1200x0", "-s", "3x2x1x0", "-f", "4x3x2x1","-u", "1", "-o", "[xtest,xtest.nii.gz,xtest_inv.nii.gz]" )

ANTsR::antsRegistration( "-d", "2", "-m", "mi[r16slice.nii.gz,r64slice.nii.gz,1,20,Regular,0.05]", "-t", "affine[1.0]", "-c", "2100x1200x1200x0", "-s", "3x2x1x0", "-f", "4x3x2x1", "-m", "cc[r16slice.nii.gz,r64slice.nii.gz,1,4]", "-t", "syn[5.0,3,0.0]", "-i", "100x100x0", "-s", "2x1x0", "-f", "3x2x1", "-u", "1", "-o", "[xtest,xtest.nii.gz,xtest_inv.nii.gz]" )